Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China

Author:

Wang SongORCID,Wang Yixiao,Zhou Chenxin,Wang Xueli

Abstract

Owing to the surge in greenhouse gas emissions, climate change is attracting increasing attention worldwide. As the world’s largest carbon emitter, the achievement of emission peak and carbon neutrality by China is seen as a milestone in the global response to the threat. By setting different “emission peak” and “carbon neutrality” paths, this study compares the different pathways taken by China towards regional emission reduction to illustrate China’s possible contribution to global emission reduction, and analyzes the role that China’s economy, population, and technology need to play in this process through the Stochastic Impacts by Regression on Population, Affluence, and Technology model. In terms of path setting, based on actual carbon emissions in various regions from 2000 to 2019 and grid data on land use from 2000 to 2020, the model simulates three emission peak paths to 2030 and two carbon neutrality paths to 2060, thus setting six possible carbon emission trends from 2000 to 2060 in different regions. It is found that the higher the unity of policy objectives at the emission peak stage, the lower the heterogeneity of the inter-regional carbon emission trends. In the carbon neutrality stage, the carbon emissions in the unconstrained symmetrical extension decline state scenario causes the greatest environmental harm. Certain regions must shoulder heavier responsibilities in the realization of carbon neutrality. The economic development level can lead to a rise in carbon emissions at the emission peak stage and inhibit it at the carbon neutrality stage. Furthermore, the dual effects of population scale and its quality level will increase carbon emissions at the emission peak stage and decrease it at the carbon neutrality stage. There will be a time lag between the output of science and technology innovation and its industrialization, while green innovation is a key factor in carbon neutrality. Based on the results, this study puts forward policy suggestions from a macro perspective to better realize China’s carbon emission goals.

Funder

Open Fund of The Key Laboratory of Carbon Neutralization and Land Space Optimization

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference103 articles.

1. Technical Summary: Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty;Allen,2019

2. GHG emission estimates for road transport in national GHG inventories

3. Forecasting the Energy-related CO2Emissions of Turkey Using a Grey Prediction Model

4. A new economics approach to modelling policies to achieve global 2020 targets for climate stabilisation

5. An Environment Kuznets Curve for GHG Emissions: A Panel Cointegration Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3