Validation and Improvement of a Convolutional Neural Network to Predict the Involved Pathology in a Head and Neck Surgery Cohort

Author:

Culié Dorian,Schiappa RenaudORCID,Contu Sara,Scheller Boris,Villarme Agathe,Dassonville Olivier,Poissonnet GillesORCID,Bozec AlexandreORCID,Chamorey EmmanuelORCID

Abstract

The selection of patients for the constitution of a cohort is a major issue for clinical research (prospective studies and retrospective studies in real life). Our objective was to validate in real life conditions the use of a Deep Learning process based on a neural network, for the classification of patients according to the pathology involved in a head and neck surgery department. 24,434 Electronic Health Records (EHR) from the first visit between 2000 and 2020 were extracted. More than 6000 EHR were manually classified in ten groups of interest according to the reason for consultation with a clinical relevance. A convolutional neural network (TensorFlow, previously reported by Hsu et al.) was then used to predict the group of patients based on their pathology, using two levels of classification based on clinically relevant criteria. On the first and second level of classification, macro-average performances were: 0.95, 0.83, 0.85, 0.97, 0.84 and 0.93, 0.76, 0.83, 0.96, 0.79 for accuracy, recall, precision, specificity and F1-score versus accuracy, recall and precision of 0.580, 580 and 0.582 for Hsu et al., respectively. We validated this model to predict the pathology involved and to constitute clinically relevant cohorts in a tertiary hospital. This model did not require a preprocessing stage, was used in French and showed equivalent or better performances than other already published techniques.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3