Author:
Suebcharoen Teeranush,Poochinapan Kanyuta,Wongsaijai Ben
Abstract
In this work, we study the bifurcation and the numerical analysis of the nonlinear Benjamin-Bona-Mahony-KdV equation. According to the bifurcation theory of a dynamic system, the various kinds of traveling wave profiles are obtained including the behavior of solitary and periodic waves. Additionally, a two-level linear implicit finite difference algorithm is implemented for investigating the Benjamin-Bona-Mahony-KdV model. The application of a priori estimation for the approximate solution also provides the convergence and stability analysis. It was demonstrated that the current approach is singularly solvable and that both time and space convergence are of second-order precision. To confirm the computational effectiveness, two numerical simulations are prepared. The findings show that the current technique performs admirably in terms of delivering second-order accuracy in both time and space with the maximum norm while outperforming prior schemes.
Funder
Chiang Mai University
The National Research Council of Thailand
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献