Development of a Robust Data-Driven Soft Sensor for Multivariate Industrial Processes with Non-Gaussian Noise and Outliers

Author:

Liu Yongshi,Yu Xiaodong,Zhao Jianjun,Pan Changchun,Sun KaiORCID

Abstract

Industrial processes are often nonlinear and multivariate and suffer from non-Gaussian noise and outliers in the process data, which cause significant challenges in data-driven modelling. To address these issues, a robust soft-sensing algorithm that integrates Huber’s M-estimation and adaptive regularisations with multilayer perceptron (MLP) is proposed in this paper. The proposed algorithm, called RAdLASSO-MLP, starts with an initially well-trained MLP for nonlinear data-driven modelling. Subsequently, the residuals of the proposed model are robustified with Huber’s M-estimation to improve the resistance to non-Gaussian noise and outliers. Moreover, a double L1-regularisation mechanism is introduced to minimise redundancies in the input and hidden layers of MLP. In addition, the maximal information coefficient (MIC) index is investigated and used to design the adaptive operator for the L1-regularisation of the input neurons to improve biased estimations with L1-regularisation. Including shrinkage parameters and Huber’s M-estimation parameter, the hyperparameters are determined via grid search and cross-validation. To evaluate the proposed algorithm, simulations were conducted with both an artificial dataset and an industrial dataset from a practical gasoline treatment process. The results indicate that the proposed algorithm is superior in terms of predictive accuracy and robustness to the classic MLP and the regularised soft-sensing approaches LASSO-MLP and dLASSO-MLP.

Funder

National Key Research and Development Program

the Open Foundation of State Key Laboratory of Process Automation in Mining & Metallurgy

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3