Intention Prediction of a Hypersonic Glide Vehicle Using a Satellite Constellation Based on Deep Learning

Author:

Cheng Yu,Wei Cheng,Wei Yongshang,You Bindi,Zhao Yang

Abstract

Tracking of hypersonic glide vehicles (HGVs) by a constellation tracking and observation system is an important part of the space-based early warning system. The uncertainty in the maneuver intentions of HGVs has a non-negligible impact on the tracking and observation process. The cooperative scheduling of multiple satellites in an environment of uncertainty in the maneuver intentions of HGVs is the main problem researched in this paper. For this problem, a satellite constellation tracking decision method that considers the HGVs’ maneuver intentions is proposed. This method is based on building an HGV maneuver intention model, developing a maneuver intention recognition and prediction algorithm, and designing a sensor-switching strategy to improve the local consensus-based bundle algorithm (LCBBA). Firstly, a recognizable maneuver intention model that can describe the maneuver types and directions of the HGVs in both the longitudinal and lateral directions was designed. Secondly, a maneuver intention recognition and prediction algorithm based on parallel, stacked long short-term memory neural networks (PSLSTM) was developed to obtain maneuver directions of the HGV. On the basis of that, a satellite constellation tracking decision method (referred to as SS-LCBBA in the following) considering the HGVs’ maneuver intentions was designed. Finally, the maneuver intention prediction capability of the PSLSTM network and two currently popular network structures: the multilayer LSTM (M-LSTM) and the dual-channel and bidirectional neural network (DCBNN) were tested for comparison. The simulation results show that the PSLSTM can recognize and predict the maneuver directions of HGVs with high accuracy. In the simulation of a satellite constellation tracking HGVs, the SS-LCBBA improved the cumulative tracking score compared to the LCBBA, the blackboard algorithm (BM), and the variable-center contract network algorithm (ICNP). Thus, it is concluded that SS-LCBBA has better adaptability to environments with uncertain intentions in solving multi-satellite collaborative scheduling problems.

Funder

Heilongjiang Postdoctoral Fund

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3