Advanced Sensing System for Sleep Bruxism across Multiple Postures via EMG and Machine Learning

Author:

Gul Jahan Zeb1ORCID,Fatima Noor2,Mohy Ud Din Zia2ORCID,Khan Maryam3ORCID,Kim Woo Young3ORCID,Rehman Muhammad Muqeet3ORCID

Affiliation:

1. Department of Electronic Engineering, Maynooth University, W23A3HY Maynooth, Ireland

2. Department of Biomedical Engineering, AIR University, Islamabad 44000, Pakistan

3. Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea

Abstract

Diagnosis of bruxism is challenging because not all contractions of the masticatory muscles can be classified as bruxism. Conventional methods for sleep bruxism detection vary in effectiveness. Some provide objective data through EMG, ECG, or EEG; others, such as dental implants, are less accessible for daily practice. These methods have targeted the masseter as the key muscle for bruxism detection. However, it is important to consider that the temporalis muscle is also active during bruxism among masticatory muscles. Moreover, studies have predominantly examined sleep bruxism in the supine position, but other anatomical positions are also associated with sleep. In this research, we have collected EMG data to detect the maximum voluntary contraction of the temporalis and masseter muscles in three primary anatomical positions associated with sleep, i.e., supine and left and right lateral recumbent positions. A total of 10 time domain features were extracted, and six machine learning classifiers were compared, with random forest outperforming others. The models achieved better accuracies in the detection of sleep bruxism with the temporalis muscle. An accuracy of 93.33% was specifically found for the left lateral recumbent position among the specified anatomical positions. These results indicate a promising direction of machine learning in clinical applications, facilitating enhanced diagnosis and management of sleep bruxism.

Funder

Ministry of Education

Ministry of Science and ICT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3