Using Voice Activity Detection and Deep Neural Networks with Hybrid Speech Feature Extraction for Deceptive Speech Detection

Author:

Mihalache SerbanORCID,Burileanu DragosORCID

Abstract

In this work, we first propose a deep neural network (DNN) system for the automatic detection of speech in audio signals, otherwise known as voice activity detection (VAD). Several DNN types were investigated, including multilayer perceptrons (MLPs), recurrent neural networks (RNNs), and convolutional neural networks (CNNs), with the best performance being obtained for the latter. Additional postprocessing techniques, i.e., hysteretic thresholding, minimum duration filtering, and bilateral extension, were employed in order to boost performance. The systems were trained and tested using several data subsets of the CENSREC-1-C database, with different simulated ambient noise conditions, and additional testing was performed on a different CENSREC-1-C data subset containing actual ambient noise, as well as on a subset of the TIMIT database. An accuracy of up to 99.13% was obtained for the CENSREC-1-C datasets, and 97.60% for the TIMIT dataset. We proceed to show how the final VAD system can be adapted and employed within an utterance-level deceptive speech detection (DSD) processing pipeline. The best DSD performance is achieved by a novel hybrid CNN-MLP network leveraging a fusion of algorithmically and automatically extracted speech features, and reaches an unweighted accuracy (UA) of 63.7% on the RLDD database, and 62.4% on the RODeCAR database.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing a Corpus for Polish Speech Enhancement by Reducing Noise, Reverberation, and Disruptions;International Conference on Information Systems Development;2024-09-09

2. Synthetic Speech Detection Using Deep Neural Networks;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

3. An integrated feature selection approach to high water stress yield prediction;Frontiers in Plant Science;2023-12-04

4. A review of deep learning techniques for speech processing;Information Fusion;2023-11

5. Neural Network Applications in Polygraph Scoring—A Scoping Review;Information;2023-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3