Preparation and Characterization of Light-Colored Polyimide Nanocomposite Films Derived from a Fluoro-Containing Semi-Alicyclic Polyimide Matrix and Colloidal Silica with Enhanced High-Temperature Dimensionally Stability

Author:

He Zhibin1,Ren Xi2,Wang Zhenzhong2,Pan Zhen2,Qi Yuexin2,Han Shujun2,Yu Haifeng1ORCID,Liu Jingang2ORCID

Affiliation:

1. School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China

2. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China

Abstract

Light-colored and transparent polyimide (PI) films with good high-temperature dimensional stability are highly desired for advanced optoelectronic applications. However, in practice, the simultaneous achievement of good optical and thermal properties in one PI film is usually difficult due to the inter-conflicting molecular design of the polymers. In the present work, a series of PI-SiO2 nanocomposite films (ABTFCPI) were developed based on the PI matrix derived from hydrogenated pyromellitic anhydride (HPMDA) and an aromatic diamine containing benzanilide and trifluoromethyl substituents in the structure, 2,2′-bis(trifluoromethyl)-4,4′-bis [4-(4-aminobenzamide)]biphenyl (ABTFMB). The inorganic SiO2 fillers were incorporated into the nanocomposite films in the form of colloidal nanoparticles dispersed in the good solvent of N,N-dimethylacetamide (DMAc) for the PI matrix. The derived ABTFCPI nanocomposite films showed good film-forming ability, flexible and tough nature, good optical transparency, and good thermal properties with loading amounts of SiO2 up to 30 wt% in the system. The ABTFCPI-30 film with a SiO2 content of 30 wt% in the film showed an optical transmittance of 79.6% at the wavelength of 400 nm (T400) with a thickness of 25 μm, yellow index (b*) of 2.15, and 5% weight loss temperatures (T5%) of 491 °C, which are all comparable to those the pristine ABTFCPI-0 matrix without filler (T400 = 81.8%; b* = 1.77; T5% = 492 °C). Meanwhile, the ABTFCPI-30 film exhibited obviously enhanced high-temperature dimensional stability with linear coefficients of thermal expansion (CTE) of 25.4 × 10−6/K in the temperature range of 50 to 250 °C, which is much lower than that of the AMTFCPI-0 film (CTE = 32.7 × 10−6/K).

Funder

Shenzhen Science and Technology Program

Shandong Key Research and Development Program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3