Study on Capillary Water Absorption of Waterborne-Polyurethane-Modified Recycled Coarse Aggregate Concrete

Author:

Fan Guoxi1,Xiang Wantong1,Yang Jing1,Yang Shutong1,Xiang Chunping12

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao 266100, China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The reuse of construction and demolition waste as a substitute for natural coarse aggregate in the production of recycled concrete has been widely used. In order to study the capillary water absorption performance of waterborne-polyurethane-modified recycled aggregate concrete (WPUMRC), the effects of different curing systems, polymer-cement ratios, and waterborne polyurethane addition methods on the cumulative water absorption and the rate of capillary water absorption of WPUMRC were analyzed, and through MIP tests, the micro modification mechanism of waterborne polyurethane in recycled concrete was analyzed. The results indicate that the optimal curing system for both DC (waterborne polyurethane is added separately from water) and HC (waterborne polyurethane is mixed with some effective water and then added) is the 14 d standard curing—14 d indoor natural drying curing system. Waterborne polyurethane can fill the pores and micro-cracks inside WPUMRC or interweave with the hydration products of cement to form a spatial network structure, reducing the porosity, and thereby improving the capillary water absorption performance of WPUMRC. Based on the MIP test results, the grey correlation method was used to establish the relationship between capillary water absorption and the pore structure of WPUMRC under the optimal curing system. In addition, the prediction model of capillary water absorption in recycled concrete was established according to the test results, which can be used to predict WPUMRC’s capillary water absorption performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Postdoctoral Application Research Program of Qingdao City

Open Projects of the State Key Laboratory for the Strength and Vibration of Mechanical Structures

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3