On Recovery of a Non-Negative Relaxation Spectrum Model from the Stress Relaxation Test Data

Author:

Stankiewicz Anna1ORCID,Bojanowska Monika2,Drozd Paweł1

Affiliation:

1. Department of Technology Fundamentals, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland

2. Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland

Abstract

The relaxation spectra, from which other material functions used to describe mechanical properties of materials can be uniquely determined, are important for modeling the rheological properties of polymers used in chemistry, food technology, medicine, cosmetics, and many other industries. The spectrum, being not directly accessible by measurement, is recovered from relaxation stress or oscillatory shear data. Only a few models and identification methods take into account the non-negativity of the real spectra. In this paper, the problem of recovery of non-negative definite relaxation spectra from discrete-time noise-corrupted measurements of relaxation modulus obtained in the stress relaxation test is considered. A new hierarchical identification scheme is developed, being applicable both for relaxation time and frequency spectra. Finite-dimensional parametric classes of models are assumed for the relaxation spectra, described by a finite series of power-exponential and square-exponential basis functions. The related models of relaxation modulus are given by compact analytical formula, described by the products of power of time and the modified Bessel functions of the second kind for the time spectrum, and by recurrence formulas based on products of power of time and complementary error functions for frequency spectrum. The basis functions are non-negative. In result, the identification task was reduced to a finite-dimensional linear-quadratic problem with non-negative unknown model parameters. To stabilize the solution, an additional smoothing constraint is introduced. Dual approach was used to solve the stated optimal identification task resulting in the hierarchical two-stage identification scheme. In the first stage, dual problem is solved in two levels and the vector of non-negative model parameters is computed to provide the best fit of the relaxation modulus to experiment data. Next, in second stage, the optimal non-negative spectrum model is determined. A complete scheme of the hierarchical computations is outlined; it can be easily implemented in available computing environments. The model smoothness is analytically studied, and the applicability ranges are numerically examined. The numerical studies have proved that using developed models and algorithm, it is possible to determine non-negative definite unimodal and bimodal relaxation spectra for a wide class of polymers. However, the examples also demonstrated that if the basis functions are non-negative and the model is properly selected for a given type of the real spectrum (unimodal, multimodal), the optimal model determined without non-negativity constraint can be non-negative in the dominant range of its arguments, especially in the wide neighborhood of the spectrum peaks.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3