Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection

Author:

Qian Sihao12,Zhang Shouyan2,Chen Danni2,Wang Jun2,Wu Wei2,Zhang Shuhua2,Geng Zhi2ORCID,He Yong3ORCID,Zhu Bo2

Affiliation:

1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China

2. School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China

3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China

Abstract

Affinity-based organic electrochemical transistor (OECT) sensors offer an attractive approach to point-of-care diagnostics due to their extreme sensitivity and easy operation; however, their application in the real world is frequently challenged by the poor storage stability of antibody proteins and the interference from biofouling in complex biofluids. In this work, we developed an antibody-free and antifouling OECT biosensor to detect C-reactive protein (CRP) at ultra-high specificity and sensitivity. The key to this novel biosensor is the gate coated by phosphorylcholine-functionalized poly (3,4-ethylene dioxythiophene) (PEDOT-PC), which possesses large capacitance and low impedance, prevents biofouling of bovine serum albumin (BSA) and the fetal bovine serum (FBS), and interacts specifically with CRP molecules in the presence of calcium ions. This PEDOT-PC-gated OECT biosensor demonstrated exceptional sensitivity when detecting the CRP molecules at 10 pg/mL, while significantly depressing the signal from the nonspecific binding. This indicates that this biosensor could detect the CRP molecules directly without nonspecific binding blocking, the usual process for the earlier transistor sensors before detection. We envision that this PEDOT-PC-gated OECT biosensor platform may offer a potentially valuable tool for point-of-care diagnostics as it alleviates concerns about poor antibody stability and BSA blocking inconstancy.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3