Experimental Study of Thermal and Fire Reaction Properties of Glass Fiber/Bismaleimide Composites for Aeronautic Application

Author:

Li Gang1,Qu Fang12ORCID,Wang Zhi2,Xiong Xuhai3,Xu Yanying2

Affiliation:

1. Fire & Explosion Protection Laboratory, Northeastern University, Shenyang 110819, China

2. Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China

3. Liaoning Key Laboratory of Advanced Polymeric Composites, Shenyang Aerospace University, Shenyang 110136, China

Abstract

Thermal behavior and fire reaction properties of aerial glass fiber (GF)/bismaleimide (BMI) composites were tested using thermogravimetric analysis (TGA), thermogravimetric coupled with Fourier transform infrared spectroscopy (TG-FTIR), cone calorimeter, limiting oxygen index, and smoke density chamber. The results showed that the pyrolysis process was one stage in a nitrogen atmosphere with the prominent volatile components of CO2, H2O, CH4, NOx, and SO2. The release of heat and smoke increased with the increase in heat flux, while the time required to reach hazardous conditions decreased. The limiting oxygen index decreased monotonically from 47.8% to 39.0% with increasing experimental temperature. The maximum specific optical density within 20 min in the non-flaming mode was greater than that in the flaming mode. According to the four kinds of fire hazard assessment indicators, the greater the heat flux, the higher the fire hazard, for the contribution of more decomposed components. The calculations of two indices confirmed that the smoke release in the early stage of fire was more negative under flaming mode. This work can provide a comprehensive understanding of the thermal and fire characteristics of GF/BMI composites used for aircraft.

Funder

Scientific Research Fund of Liaoning Provincial Education Department

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3