Mevacor/Poly(vinyl acetate/2-hydroxyethyl methacrylate) as Solid Solution: Preparation, Solubility Enhancement and Drug Delivery

Author:

Alassaf Mohammed1,Alqahtani Saad Mohammed1,Al Khulaifi Rana Salem1ORCID,Saeed Waseem Sharaf1ORCID,Alsubaie Faisal S.1ORCID,Semlali Abdelhabib2ORCID,Aouak Taieb1

Affiliation:

1. Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

2. Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada

Abstract

Mevacor/Poly(vinyl acetate-co-2-hydroxyethyl methacrylate) drug carrier systems (MVR/VAC-HEMA) containing different Mevacor (MVR) contents were prepared in one pot by free radical copolymerization of vinyl acetate with 2-hydroxyethyl methacrylate using an LED lamp light in the presence of camphorquinone as a photoinitiator and Mevacor as a drug filler. The prepared material was characterized by FTIR, 1H NMR, DSC, SEM and XRD methods. Different parameters influencing the efficiency in the Mecvacor-water solubility and the drug delivery of this system, such as the swelling capacity of the carrier, the amount of Mevacor loaded and the pH medium have been widely investigated. The results obtained revealed that the Mevacor particles were uniformly dispersed in their molecular state in the copolymer matrix forming a solid solution; the cell toxicity of the virgin poly(vinyl acetate-co-2-hydroxy ethyl methacrylate) (VAC-HEMA) and MVR/VAC-HEMA drug carrier system exhibited no significant effect on their viability when between 0.25 and 2.00 wt% was loaded in these materials; the average swelling capacity of VAC-HEMA material in water was found to be 45.16 wt%, which was practically unaffected by the pH medium and the solubility of MVR deduced from the release process reached more than 22 and 37 times that of the powder dissolved directly in pH 1 and 7 media, respectively. The in vitro MVR release kinetic study revealed that the MVR/VAC-HEMA system containing 0.5 wt% MVR exhibited the best performance in the short gastrointestinal transit (GITT), while that containing 2.0 wt% is for the long transit as they were able to considerably reduce the minimum release of this drug in the stomach (pH1).

Funder

Researchers Supporting Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3