Influence of Coffee Variety and Processing on the Properties of Parchments as Functional Bioadditives for Biobased Poly(butylene succinate) Composites

Author:

Rennert Mirko1ORCID,Hiller Benedikt T.1ORCID

Affiliation:

1. Institute for Circular Economy of Bio:Polymers at Hof University (ibp), Hof University of Applied Sciences, 95028 Hof, Germany

Abstract

Fermented polymers like biobased poly(butylene succinate) (BioPBS) have become more relevant as technical substitutes for ductile petrochemical-based polymers but require biogenic functional additives to deaccelerate undesired thermo-oxidative degradation and keep a fully biobased character. In this paper, the influence of coffee parchment (PMT) from two different varieties and processings on the thermo-oxidative stabilization and mechanical properties of poly(butylene succinate) composites up to 20 wt.-% PMT were investigated. Micronized with a TurboRotor mill, both PMT powders differ in particle size and shape, moisture ab- and adsorption behavior and antioxidative properties. It could be shown that pulped-natural PMT consists partially of coffee cherry residues, which leads to a higher total polyphenol content and water activity. The homogeneous PMT from fully washed processing has a higher thermal degradation resistance but consists of fibers with larger diameters. Compounded with the BioPBS and subsequent injection molded, the fully washed PMT leads to higher stiffness and equal tensile strength but lower toughness compared to the pulped-natural PMT, especially at lower deformation speed. Surprisingly, the fully washed PMT showed a higher stability against thermo-oxidative decomposition despite the lower values in the total phenol content and antioxidative activity. The required antioxidative stabilizers might be extracted at higher temperatures from the PMT fibers, making it a suitable biogenic stabilizer for extrusion processes.

Funder

Federal Ministry of Food and Agriculture of Germany

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3