Fused Filament Fabricated Poly(lactic acid) Parts Reinforced with Short Carbon Fiber and Graphene Nanoparticles with Improved Tribological Properties

Author:

Al Abir Anzum1ORCID,Chakrabarti Dipto1,Trindade Bruno1ORCID

Affiliation:

1. CEMMPRE—Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

Abstract

This study investigated the mechanical and tribological properties of 3D-printed Poly (lactic acid) (PLA) composites reinforced with different concentrations of carbon fibers (SCF) and graphene nanoparticles (GNP) (0.5 to 5 wt.% of each filler). The samples were produced using FFF (fused filament fabrication) 3D printing. The results showed a good dispersion of the fillers in the composites. SCF and GNP promoted the crystallization of the PLA filaments. The hardness, elastic modulus, and specific wear resistance grew with the increase in the filler concentration. A hardness improvement of about 30% was observed for the composite with 5 wt.% of SCF + 5 wt.% GNP (PSG-5) compared to PLA. The same trend was observed for the elastic modulus with an increase of 220%. All the composites presented lower coefficients of friction (0.49 to 0.6) than PLA (0.71). The composite PSG-5 sample showed the lowest value of specific wear rate (4.04 × 10−4 mm3/N.m), corresponding to about a five times reduction compared to PLA. Therefore, it was concluded that the addition of GNP and SCF to PLA made it possible to obtain composites with better mechanical and tribological behavior.

Funder

Portuguese Foundation for Science and Technology

Erasmus Mundus Scholarship

European Commission

EACEA agency

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the tribological performance of PLA-based biocomposites reinforced with graphene oxide;Journal of the Mechanical Behavior of Biomedical Materials;2023-12

2. A simple method for improving the tensile strength of fused filament fabrication part;The International Journal of Advanced Manufacturing Technology;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3