Parameter Determination of the 2S2P1D Model and Havriliak–Negami Model Based on the Genetic Algorithm and Levenberg–Marquardt Optimization Algorithm

Author:

Qiu Mingzhu1,Cao Peng1ORCID,Cao Liang1,Tan Zhifei2,Hou Chuantao3,Wang Long3,Wang Jianru4

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100084, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

3. Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Structure and Environment Engineering, Beijing 100076, China

4. The 41st Institute of the Fourth Research Academy of CASC, Xi’an 100124, China

Abstract

This study utilizes the genetic algorithm (GA) and Levenberg–Marquardt (L–M) algorithm to optimize the parameter acquisition process for two commonly used viscoelastic models: 2S2P1D and Havriliak–Negami (H–N). The effects of the various combinations of the optimization algorithms on the accuracy of the parameter acquisition in these two constitutive equations are investigated. Furthermore, the applicability of the GA among different viscoelastic constitutive models is analyzed and summarized. The results indicate that the GA can ensure a correlation coefficient of 0.99 between the fitting result and the experimental data of the 2S2P1D model parameters, and it is further proved that the fitting accuracy can be achieved through the secondary optimization via the L–M algorithm. Since the H–N model involves fractional power functions, high-precision fitting by directly fitting the parameters to experimental data is challenging. This study proposes an improved semi-analytical method that first fits the Cole–Cole curve of the H–N model, followed by optimizing the parameters of the H–N model using the GA. The correlation coefficient of the fitting result can be improved to over 0.98. This study also reveals a close relationship between the optimization of the H–N model and the discreteness and overlap of experimental data, which may be attributed to the inclusion of fractional power functions in the H–N model.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3