Affiliation:
1. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
2. Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
Abstract
Triamine-based HBPI membranes are known for high gas separation selectivity and physical stability, but their permeabilities are still very low. In this study, we utilized a tetramine monomer called TPDA (N,N,N′,N′-tetrakis(4-aminophenyl)-1,4-benzenediamine) as a crosslinking center and incorporated an additional diamine comonomer called DAM (2,4,6-trimethyl-1,3-diaminobenzene) to enhance gas separation performance, especially gas permeability. The findings demonstrated that the resultant 6FDA−DAM/TPDA membranes based on tetramine TPDA exhibited a greater amount of free volume compared to the triamine-based HBPI membranes, resulting in significantly higher gas permeabilities. Furthermore, the higher concentration of DAM component led to the generation of more fractional free volumes (FFV). Consequently, the gas permeabilities of the 6FDA−DAM/TPDA membranes increased with an increase in DAM content, with a minimal compromise on selectivity. The enhanced gas permeabilities of the 6FDA−DAM/TPDA membranes enabled them to minimize the footprint required for membrane installations in real-world applications. Moreover, the 6FDA−DAM/TPDA membranes exhibited remarkable durability against physical aging and plasticization, thanks to the incorporation of a hyperbranched network structure.
Funder
National Natural Science Foundation of China
Tianjin “Project + Team” Key Training Special Project
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献