Inorganic Fillers and Their Effects on the Properties of Flax/PLA Composites after UV Degradation

Author:

Sit Moumita1,Dashatan Saeid1ORCID,Zhang Zhongyi1,Dhakal Hom Nath1ORCID,Khalfallah Moussa2ORCID,Gamer Nicolas2,Ling Jarren1

Affiliation:

1. Advanced Polymers and Composites (APC) Research Group, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK

2. Kairos, 1 rue des Senneurs, ZI du Moros, 29900 Concarneau, France

Abstract

The present investigation seeks to assess the impact of fillers on the mechanical characteristics of entirely biodegradable composites, introducing an advanced solution to fulfil long-term durability demands within point-of-purchase (POP) industries. The inclusion of calcium carbonate (CaCO3) fillers on the various properties of the flax fibre-reinforced composites, after accelerated irradiation in an ultraviolet (UV) radiation exposure has been investigated in the present study. Different types of flax fibre-reinforced poly lactic acid (PLA) biocomposites (with and without filler) were fabricated. The mechanical (tensile and flexural), and physical properties of the specimens were assessed after 500 h of exposure to accelerated UV irradiation of 0.48 W/m2 at 50 °C and were compared with those of the unexposed specimens. The results indicate that the presence of the inorganic filler significantly improved the performance of the biocomposites compared to the unfilled biocomposites after UV exposure. After adding 20% of fillers, the tensile strength was increased by 2% after UV degradation, whereas the biocomposite without filler lost 18% of its strength after UV exposure. This can be attributed to the change in the photo-degradation of the PLA due to the presence of the CaCO3 filler, which acts as a safeguard against UV light penetration by creating a protective barrier. The scanning electron microscopy (SEM) images of the degraded specimen surface show substantial difference in the surface topography of the composites with and without fillers.

Funder

INTERREG VA Program, FLOWER project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3