Hybrid Coatings for Active Protection against Corrosion of Mg and Its Alloys

Author:

Gnedenkov Andrey S.1ORCID,Sinebryukhov Sergey L.1ORCID,Filonina Valeriia S.1,Ustinov Alexander Yu.1,Gnedenkov Sergey V.1ORCID

Affiliation:

1. Institute of Chemistry FEB RAS, Vladivostok 690022, Russia

Abstract

A novel approach to surface modification was developed to improve the corrosion performance of biodegradable magnesium alloys. Additively manufactured magnesium samples and Mg-Mn-based magnesium alloys were used in this study. This method involves the combination of plasma electrolytic oxidation to create a porous ceramic-like matrix, followed by treatment with protective biocompatible agents. The most efficient method for the PEO-layer impregnation using sodium oleate and polycaprolactone was selected and optimized. The correlation between the structure, composition, and protective properties of the hybrid coatings was established. The composition of the formed polymer-containing layers was established using XPS and Raman microspectroscopy. The presence of sodium oleate and its distribution across the coating surface was confirmed at the microscale. The corrosion-protection level of the hybrid layers was assessed using potentiodynamic polarization measurements, electrochemical impedance spectroscopy, hydrogen evolution testing, and gravimetry (mass-loss tests) in vitro. The oleate-containing polycaprolactone layers (HC-SO 0.1–2) demonstrated stable corrosion behavior even after 7 days of immersion in Hank’s balanced salt solution. The corrosion-current density and impedance modulus measured at a frequency of 0.1 Hz for the samples with hybrid coating after 7 days of exposure were equal to 5.68 × 10−8 A∙cm−2 and 2.03 × 106 Ω∙cm2, respectively. The developed method of surface modification demonstrates the coating’s self-healing properties. The effectiveness of employing hybrid anticorrosive bioactive PEO coatings for biomedical products made from magnesium and its alloys was demonstrated.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3