Affiliation:
1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
2. School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Abstract
Boron is in high demand in many sectors, yet there are significant flaws in current boron resource utilization. This study describes the synthesis of a boron adsorbent based on polypropylene (PP) melt-blown fiber using ultraviolet (UV)-induced grafting of Glycidyl methacrylate (GMA) onto PP melt-blown fiber, followed by an epoxy ring-opening reaction with N-methyl-D-glucosamine (NMDG). Using single-factor studies, grafting conditions such as the GMA concentration, benzophenone dose, and grafting duration were optimized. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and water contact angle were used to characterize the produced adsorbent (PP-g-GMA-NMDG). The PP-g-GMA-NMDG adsorption process was examined by fitting the data with different adsorption settings and models. The results demonstrated that the adsorption process was compatible with the pseudo-second-order model and the Langmuir model; however, the internal diffusion model suggested that the process was impacted by both extra- and intra-membrane diffusion. According to thermodynamic simulations, the adsorption process was exothermic. At pH 6, the greatest saturation adsorption capacity to boron was 41.65 mg·g−1 for PP-g-GMA-NMDG. The PP-g-GMA-NMDG preparation process is a feasible and environmentally friendly route, and the prepared PP-g-GMA-NMDG has the advantages of high adsorption capacity, outstanding selectivity, good reproducibility, and easy recovery when compared to similar adsorbents, indicating that the reported adsorbent is promising for boron separation from water.
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Postgraduate Research and Practice Innovation Program of Jiangsu Province
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献