A General Deep Learning Method for Computing Molecular Parameters of a Viscoelastic Constitutive Model by Solving an Inverse Problem

Author:

Ye Minghui1ORCID,Fan Yuan-Qi1,Yuan Xue-Feng1ORCID

Affiliation:

1. Institute for Systems Rheology, Guangzhou University, No. 230 West Outer Ring Road, Higher Education Mega-Center, Panyu District, Guangzhou 510006, China

Abstract

Prediction of molecular parameters and material functions from the macroscopic viscoelastic properties of complex fluids are of great significance for molecular and formulation design in fundamental research as well as various industrial applications. A general learning method for computing molecular parameters of a viscoelastic constitutive model by solving an inverse problem is proposed. The accuracy, convergence and robustness of a deep neural network (DNN)-based numerical solver have been validated by considering the Rolie-Poly model for modeling the linear and non-linear steady rheometric properties of entangled polymer solutions in a wide range of concentrations. The results show that as long as the DNN could be trained with a sufficiently high accuracy, the DNN-based numerical solver would rapidly converge to its solution in solving an inverse problem. The solution is robust against small white noise disturbances to the input stress data. However, if the input stress significantly deviates from the original stress, the DNN-based solver could readily converge to a different solution. Hence, the resolution of the numerical solver for inversely computing molecular parameters is demonstrated. Moreover, the molecular parameters computed by the DNN-based numerical solver not only reproduce accurately the steady viscoelastic stress of completely monodisperse linear lambda DNA solutions over a wide range of shear rates and various concentrations, but also predict a power law concentration scaling with a nearly same scaling exponent as those estimated from experimental results.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3