Affiliation:
1. Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
Abstract
To the best of our knowledge, this study reports the first direct electropolymerization of a dicyanobenzene-carbazole dye functionalized with an imidazole group to prepare redox- and photoactive porous organic polymer (POP) films in controlled amounts. The POP films were grown on indium-doped tin oxide (ITO) and carbon surfaces using a new monomer, 1-imidazole-2,4,6-tri(carbazol-9-yl)-3,5-dicyanobenzene (1, 3CzImIPN), through a simple one-step process. The structure and activities of the POP films were investigated as photoelectrodes for electrooxidations, as heterogeneous photocatalysts for photosynthetic olefin isomerizations, and for solid-state photoluminescence behavior tunable by lithium-ion concentrations in solution. The results demonstrate that the photoredox-POPs can be used as efficient photocatalysts, and they have potential applications in sensing.
Funder
Canada First Research Excellence Fund
Natural Sciences and Engineering Research Council of Canada
University of Alberta
Subject
Polymers and Plastics,General Chemistry