Innovative Use of Waste PET-Derived Additive to Enhance Application Potentials of Recycled Concrete Aggregates in Asphalt Rubber

Author:

Chen Guofu1234,Peng Yuhao1,Yang Nannan1ORCID,Xu Guohao13,Gong Kai13,Xu Xiong23ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China

2. Key Laboratory of Road Structure and Material of Ministry of Transport (Changsha), Changsha University of Science & Technology, Changsha 410114, China

3. Hubei Provincial Engineering Research Center for Green Civil Engineering Materials and Structures, Wuhan Institute of Technology, Wuhan 430073, China

4. School of Civil Engineering, Guang’an Vocational & Technical College, Guangan 638000, China

Abstract

Polyethylene terephthalate (PET) drinking bottles, rubber tires, and concrete are the very common municipal solid wastes, which are usually disposed of at landfills and stockpiles and cause continuous damage to the environment. Some studies have indicated that waste PET can be chemically converted into an additive for improving the overall properties of asphalt pavement incorporating natural aggregates, especially the moisture-induced damage resistance. However, it is not clear whether this PET additive still works for asphalt rubber containing recycled concrete aggregates (RCA). To well reveal this issue, this study first adopted a similar way to chemically recycle waste PET into the additive for modifying crumb rubber modified asphalt (CRMA) binder and then mixed the binder with the 13 mm maximum aggregate stone matrix asphalt containing 100% coarse RCA for preparing the mixtures. After a series of physicochemical characterizations of the PET additive, the moisture resistance, rutting resistance, low-temperature cracking resistance, and fatigue resistance of the mixture were systematically evaluated. The results showed that the PET additive is capable of improving the resistance to moisture and high-temperature deformation of asphalt rubber and helps greatly reduce the moisture-induced damage to the interfacial bonding layer. To be more detailed, the residual Marshall stability (RMS) value of RCA-CRMAM/1PET after 72 h of immersion is higher than 85% by contrast to that of RCA-CRMAM (77.1%), while the tensile strength ratio (TSR) value of RCA-CRMAM/1PET shows more than 80% compared to that of 65.2%. In addition, only 1% PET additive can enhance the high-temperature resistance of asphalt rubber containing RCA to rut and allow it to maintain higher resistance to rut after moisture-induced damage. 1% PET additive can help improve the bearing capacity of RCA-CRMAM under a low-temperature environment and delay its fatigue life at small stresses. Generally, with the successful introduction of PET additives to asphalt rubber containing RCA, more durable and sustainable highway pavement can be produced and applied in practice to alleviate the negative impacts caused by waste PET, waste tire rubber, and waste concrete.

Funder

Open Fund of the Key Laboratory of Road Structure and Material of the Ministry of Transport

Key Research and Development Program of the Wuhan Science and Technology Department

Science and Technology Project of Henan Provincial Department of Transportation

Science and Technology Plan Project of the Department of Housing and Urban-Rural Development of Hubei Province

Natural Science Foundation of Hubei Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3