Abstract
The fault prognostics of the photovoltaic (PV) power generation system is expected to be a significant challenge as more and more PV systems with increasingly large capacities continue to come into existence. The PV inverter is the core component of the PV system, and it is essential to develop approaches that accurately predict the occurrence of inverter faults to ensure the PV system’s safety. This paper proposes a fault prognostics method which makes full use of the similarities between inverter clusters. First, a feature space was constructed using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. Then, the fast clustering algorithm was used to search the center inverter of each sampling time from the feature space. The status of the center inverter was adopted to establish the health baseline. Finally, the Gaussian mixture model was established with two data clusters based on the central inverter and the inverter to be predicted. The divergence of the two clusters could be used to predict the inverter’s fault. The performance of the proposed method was evaluated with real PV monitoring data. The experimental results showed that the proposed method successfully predicted the occurrence of an inverter fault 3 months in advance.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献