A New Approach to Quantify Soccer Players’ Readiness through Machine Learning Techniques

Author:

Mandorino Mauro12ORCID,Tessitore Antonio2ORCID,Leduc Cédric34ORCID,Persichetti Valerio1,Morabito Manuel1,Lacome Mathieu15

Affiliation:

1. Performance and Analytics Department, Parma Calcio 1913, 43121 Parma, Italy

2. Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy

3. Carnegie Applied Rugby Research (CARR) Center, Institute for Sport, Physical Activity and Leisure, Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK

4. Sport Science and Medicine Department, Crystal Palace FC, London SE25 6PU, UK

5. Sport Expertise and Performance Laboratory, French National Institute of Sports (INSEP), 75012 Paris, France

Abstract

Previous studies have shown that variation in PlayerLoad (PL) could be used to detect fatigue in soccer players. Machine learning techniques (ML) were used to develop a new locomotor efficiency index (LEI) based on the prediction of PL. Sixty-four elite soccer players were monitored during an entire season. GPS systems were employed to collect external load data, which in turn were used to predict PL during training/matches. Random Forest Regression (RF) produced the best performance (mean absolute percentage error = 0.10 ± 0.01) and was included in further analyses. The difference between the PL value predicted by the ML model and the real one was calculated, individualized for each player using a z-score transformation (LEI), and interpreted as a sign of fatigue (negative LEI) or neuromuscular readiness (positive LEI). A linear mixed model was used to analyze how LEI changed according to the period of the season, day of the week, and weekly load. Regarding seasonal variation, the lowest and highest LEI values were recorded at the beginning of the season and in the middle of the season, respectively. On a weekly basis, our results showed lower values on match day − 2, while high weekly training loads were associated with a reduction in LEI.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3