Recognition of Student Engagement State in a Classroom Environment Using Deep and Efficient Transfer Learning Algorithm

Author:

Ikram Sana1,Ahmad Haseeb1,Mahmood Nasir1,Faisal C. M. Nadeem1ORCID,Abbas Qaisar2ORCID,Qureshi Imran2,Hussain Ayyaz3

Affiliation:

1. Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan

2. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

3. Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan

Abstract

A student’s engagement in a real classroom environment usually varies with respect to time. Moreover, both genders may also engage differently during lecture procession. Previous research measures students’ engagement either from the assessment outcome or by observing their gestures in online or real but controlled classroom environments with limited students. However, most works either manually assess the engagement level in online class environments or use limited features for automatic computation. Moreover, the demographic impact on students’ engagement in the real classroom environment is limited and needs further exploration. This work is intended to compute student engagement in a real but least controlled classroom environment with 45 students. More precisely, the main contributions of this work are twofold. First, we proposed an efficient transfer-learning-based VGG16 model with extended layer, and fine-tuned hyperparameters to compute the students’ engagement level in a real classroom environment. Overall, 90% accuracy and 0.5 N seconds computational time were achieved in terms of computation for engaged and non-engaged students. Subsequently, we incorporated inferential statistics to measure the impact of time while performing 14 experiments. We performed six experiments for gender impact on students’ engagement. Overall, inferential analysis reveals the positive impact of time and gender on students’ engagement levels in a real classroom environment. The comparisons were also performed by various transfer learning algorithms. The proposed work may help to improve the quality of educational content delivery and decision making for educational institutions.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3