Abstract
This paper presents a beehive-inspired multi-agent drone system for autonomous information collection to support the needs of first responders and emergency teams. The proposed system is designed to be simple, cost-efficient, yet robust and scalable at the same time. It includes several unmanned aerial vehicle (UAVs) that can be tasked with data collection, and a single control station that acts as a data accumulation and visualization unit. The system also provides a local communication access point for the UAVs to exchange information and coordinate the data collection routes. By avoiding peer-to-peer communication and using proactive collision avoidance and path-planning, the payload weight and per-drone costs can be significantly reduced; the whole concept can be implemented using inexpensive off-the-shelf components. Moreover, the proposed concept can be used with different sensors and types of UAVs. As such, it is suited for local-area operations, but also for large-scale information-gathering scenarios. The paper outlines the details of the system hardware and software design, and discusses experimental results for collecting image information with a set of 4 multirotor UAVs at a small experimental area. The obtained results validate the concept and demonstrate robustness and scalability of the system.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献