Beehive-Inspired Information Gathering with a Swarm of Autonomous Drones

Author:

Viseras AlbertoORCID,Wiedemann ThomasORCID,Manss Christoph,Karolj Valentina,and Juan Marchal Dmitriy ShutinORCID

Abstract

This paper presents a beehive-inspired multi-agent drone system for autonomous information collection to support the needs of first responders and emergency teams. The proposed system is designed to be simple, cost-efficient, yet robust and scalable at the same time. It includes several unmanned aerial vehicle (UAVs) that can be tasked with data collection, and a single control station that acts as a data accumulation and visualization unit. The system also provides a local communication access point for the UAVs to exchange information and coordinate the data collection routes. By avoiding peer-to-peer communication and using proactive collision avoidance and path-planning, the payload weight and per-drone costs can be significantly reduced; the whole concept can be implemented using inexpensive off-the-shelf components. Moreover, the proposed concept can be used with different sensors and types of UAVs. As such, it is suited for local-area operations, but also for large-scale information-gathering scenarios. The paper outlines the details of the system hardware and software design, and discusses experimental results for collecting image information with a set of 4 multirotor UAVs at a small experimental area. The obtained results validate the concept and demonstrate robustness and scalability of the system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A low-cost vision system for online reciprocal collision avoidance with UAVs;Aerospace Science and Technology;2024-07

2. A review on collective behavior modeling and simulation: building a link between cognitive psychology and physical action;Applied Intelligence;2023-08-15

3. Design of Rider Invasive Weed Optimization Algorithm for Unmanned Aerial Vehicle Path Planning;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15

4. Coordinating heterogeneous mobile sensing platforms for effectively monitoring a dispersed gas plume;Integrated Computer-Aided Engineering;2022-09-05

5. Determination of Subscribers Coordinates using Flying Network for Emergencies;2022 24th International Conference on Advanced Communication Technology (ICACT);2022-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3