Disposal of High-Level Nuclear Waste in Deep Horizontal Drillholes

Author:

Muller Richard A.,Finsterle StefanORCID,Grimsich John,Baltzer Rod,Muller Elizabeth A.,Rector James W.,Payer Joe,Apps John

Abstract

Spent nuclear fuel and high-level radioactive waste can be disposed in deep horizontal drillholes in sedimentary, metamorphic or igneous rocks. Horizontal drillhole disposal has safety, operational and economic benefits: the repository is deep in the brine-saturated zone far below aquifers in a reducing environment of formations that can be shown to have been isolated from the surface for exceedingly long times; its depth provides safety against inadvertent intrusion, earthquakes and near-surface perturbations; it can be placed close to the reactors and interim storage facilities, minimizing transportation; disposal costs per ton of waste can be kept substantially lower than for mined repositories by its smaller size, reduced infrastructure needs and staged implementation; and, if desired, the waste could be retrieved using “fishing” technology. In the proposed disposal concept, corrosion-resistant canisters containing unmodified fuel assemblies from commercial reactors would be placed end-to-end in up to 50 cm diameter horizontal drillholes, a configuration that reduces mechanical stresses and keeps the temperatures below the boiling point of the brine. Other high-level wastes, such as capsules containing 137Cs and 90Sr, can be disposed in small-diameter horizontal drillholes. We provide an overview of this novel disposal concept and its technology, discuss some of its safety aspects and compare it to mined repositories and the deep vertical borehole disposal concept.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3