Author:
Mu Mingfei,Li Xinghu,Qiu Yong,Shi Yang
Abstract
Increasingly stringent emission regulations have imposed strict requirements on the particulate matter (PM) from gasoline direct injection (GDI) engines, and the gasoline particulate filters (GPFs) are considered one of the most promising devices for meeting these requirement. To reduce the flow resistance of the GPF, a type of nested cylinder and diversion channel plug (NC-DCP) GPF is designed. It is composed of nested foam metal cylinders and annular diversion channel plugs. The pressure drop and its influencing factors were theoretically studied. The results show that the structural parameters, such as the cylindrical layer spacing and the length-to-diameter ratio, and the pressure drop have trade-off relationships. Moreover, the filtration efficiency is analyzed, and the calculation formula is summarized. The internal flow field distribution and its influencing factors are discussed based on a 2-D axisymmetric simulation. The results show that the exhaust velocity affects the flow field uniformity but does not affect the flow field structure. The pressure drop gradually decreases as the number of nested layers increases, and the positive direction is beneficial to reduce the overall pressure drop. Under different velocities, there is an optimal length-to-diameter ratio to minimize the pressure drop, and the simicircular diversion plug greatly improves the flow uniformity index for the internal flow field of the filter element.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference40 articles.
1. Automotive Gasoline Direct-Injection Engines;Zhao,2002
2. The turbocharged GDI engine: Boosted synergies for high fuel economy plus ultra-low emission;Bandel;SAE Tech. Pap.,2006
3. DI boost: Application of a high performance gasoline direct injection concept;Woldring;SAE Tech. Pap.,2007
4. Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献