Study on Urban Rainfall–Runoff Model under the Background of Inter-Basin Water Transfer

Author:

Yang Jiashuai,Xu ChaoweiORCID,Ni Xinran,Zhang Xuantong

Abstract

The imbalance of water supply and demand forces many cities to transfer water across basins, which changes the original “rainfall–runoff” relationship in urban basins. Long-term hydrological simulation of urban basins requires a tool that comprehensively considers the relationship of “rainfall–runoff” and the background of inter-basin water transfer. This paper combines the rainfall–runoff model, the GR3 model, with the background of inter-basin water transfer to simulate the hydrological process of Huangtaiqiao basin (321 km2) in Jinan city, Shandong Province, China for 18 consecutive years with a 1 h time step. Twenty-one flood simulation results of different scales over 18 years were selected for statistical analysis. By comparing the simulation results of the GR3 model and the measured process, the results were verified by multiple evaluation indicators (the Nash–Sutcliffe efficiency coefficient, water relative error, the relative error of flood peak flow, and difference of peak arrival time) at different time scales. It was found that the simulation results of the GR3 model after inter-basin water transfer were considered to be in good agreement with the measured data. This study proves the long-term impact of inter-basin water transfer on rainfall–runoff processes in an urban basin, and the GR3-ibwt model can better simulate the hydrological processes of urban basins, providing a new perspective and method.

Funder

Major Science and Technology Program for Water Pollution Control and treatment, China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3