Abstract
Forecasting meteorological and hydrological drought using standardized metrics of rainfall and runoff (SPI/SRI) is critical for the long-term planning and management of water resources at the global and regional levels. In this study, various machine learning (ML) techniques including four methods (i.e., ANN, ANFIS, SVM, and DT) were utilized to construct hydrological drought forecasting models in the Wadi Ouahrane basin in the northern part of Algeria. The performance of ML models was assessed using evaluation criteria, including RMSE, MAE, NSE, and R2. The results showed that all the ML models accurately predicted hydrological drought, while the SVM model outperformed the other ML models, with the average RMSE = 0.28, MAE = 0.19, NSE = 0.86, and R2 = 0.90. The coefficient of determination of SVM was 0.95 for predicting SRI at the 12-months timescale; as the timescale moves from higher to lower (12 months to 3 months), R2 starts decreasing.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献