Toughening of Ni-Mn-Based Polycrystalline Ferromagnetic Shape Memory Alloys

Author:

Ma Siyao12,Zhang Xuexi1,Zheng Guangping2,Qian Mingfang1ORCID,Geng Lin1

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Solid-state refrigeration technology is expected to replace conventional gas compression refrigeration technology because it is environmentally friendly and highly efficient. Among various solid-state magnetocaloric materials, Ni-Mn-based ferromagnetic shape memory alloys (SMAs) have attracted widespread attention due to their multifunctional properties, such as their magnetocaloric effect, elastocaloric effect, barocaloric effect, magnetoresistance, magnetic field-induced strain, etc. Recently, a series of in-depth studies on the thermal effects of Ni-Mn-based magnetic SMAs have been carried out, and numerous research results have been obtained. It has been found that poor toughness and cyclic stability greatly limit the practical application of magnetic SMAs in solid-state refrigeration. In this review, the influences of element doping, microstructure design, and the size effect on the strength and toughness of Ni-Mn-based ferromagnetic SMAs and their underlying mechanisms are systematically summarized. The pros and cons of different methods in enhancing the toughness of Ni-Mn-based SMAs are compared, and the unresolved issues are analyzed. The main research directions of Ni-Mn-based ferromagnetic SMAs are proposed and discussed, which are of scientific and technological significance and could promote the application of Ni-Mn-based ferromagnetic SMAs in various fields.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by CAST

Research Grants Council, University Grants Committee, Hong Kong

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3