Nitrate-Nitrogen Adsorption Characteristics and Mechanisms of Various Garden Waste Biochars

Author:

Yao Jingjing123ORCID,Wang Zhiyi14,Liu Mengfan23,Bai Bing23,Zhang Chengliang23

Affiliation:

1. Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China

2. Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China

3. The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China

4. China Institute of Geo-Environment Monitoring, Beijing 100081, China

Abstract

Nitrate-nitrogen (NO3−–N) removal and garden waste disposal are critical concerns in urban environmental protection. In this study, biochars were produced by pyrolyzing various garden waste materials, including grass clippings (GC), Rosa chinensis Jacq. branches (RC), Prunus persica branches (PP), Armeniaca vulgaris Lam. branches (AV), Morus alba Linn. sp. branches (MA), Platycladus orientalis (L.) Franco branches (PO), Pinus tabuliformis Carrière branches (PT), and Sophorajaponica Linn. branches (SL) at three different temperatures (300 °C, 500 °C, and 700 °C). These biochars, labeled as GC300, GC500, GC700, and so on., were then used to adsorb NO3−–N under various conditions, such as initial pH value, contact time, initial NO3−–N concentration, and biochar dosage. Kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. The equilibrium adsorption data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. The results revealed that the biochar yields varied between 14.43% (PT700) and 47.09% (AV300) and were significantly influenced by the type of garden waste and decreased with increasing pyrolysis temperature, while the pH and ash content showed an opposite trend (p < 0.05). The efficiency of NO3−–N removal was significantly influenced by the type of feedstock, preparation process, and adsorption conditions. Higher pH values had a negative influence on NO3−–N adsorption, while longer contact time, higher initial concentration of NO3−–N, and increased biochar dosage positively affected NO3−–N adsorption. Most of the kinetic data were better fitted to the pseudo-second-order kinetic model (0.998 > R2 > 0.927). Positive b values obtained from the Temkin model indicated an exothermic process of NO3−–N adsorption. The Langmuir model provided better fits for more equilibrium adsorption data than the Freundlich model, with the maximum NO3−–N removal efficiency (62.11%) and adsorption capacity (1.339 mg·g−1) in PO700 under the conditions of pH = 2, biochar dosage = 50 mg·L−1, and a reaction time of 24 h. The outcomes of this study contribute valuable insights into garden waste disposal and NO3−–N removal from wastewater, providing a theoretical basis for sustainable environmental management practices.

Funder

the Open Fund of Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources

the Innovation Cultivation Project of Beijing Academy of Science and Technology

the Innovation Engineering Project of Beijing Academy of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3