Affiliation:
1. Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources, Beijing 100081, China
2. Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
3. The National Engineering Laboratory of Circular Economy (Industrial Wastewater Utilization and Industrial Water Conservation), Beijing 100095, China
4. China Institute of Geo-Environment Monitoring, Beijing 100081, China
Abstract
Nitrate-nitrogen (NO3−–N) removal and garden waste disposal are critical concerns in urban environmental protection. In this study, biochars were produced by pyrolyzing various garden waste materials, including grass clippings (GC), Rosa chinensis Jacq. branches (RC), Prunus persica branches (PP), Armeniaca vulgaris Lam. branches (AV), Morus alba Linn. sp. branches (MA), Platycladus orientalis (L.) Franco branches (PO), Pinus tabuliformis Carrière branches (PT), and Sophorajaponica Linn. branches (SL) at three different temperatures (300 °C, 500 °C, and 700 °C). These biochars, labeled as GC300, GC500, GC700, and so on., were then used to adsorb NO3−–N under various conditions, such as initial pH value, contact time, initial NO3−–N concentration, and biochar dosage. Kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. The equilibrium adsorption data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. The results revealed that the biochar yields varied between 14.43% (PT700) and 47.09% (AV300) and were significantly influenced by the type of garden waste and decreased with increasing pyrolysis temperature, while the pH and ash content showed an opposite trend (p < 0.05). The efficiency of NO3−–N removal was significantly influenced by the type of feedstock, preparation process, and adsorption conditions. Higher pH values had a negative influence on NO3−–N adsorption, while longer contact time, higher initial concentration of NO3−–N, and increased biochar dosage positively affected NO3−–N adsorption. Most of the kinetic data were better fitted to the pseudo-second-order kinetic model (0.998 > R2 > 0.927). Positive b values obtained from the Temkin model indicated an exothermic process of NO3−–N adsorption. The Langmuir model provided better fits for more equilibrium adsorption data than the Freundlich model, with the maximum NO3−–N removal efficiency (62.11%) and adsorption capacity (1.339 mg·g−1) in PO700 under the conditions of pH = 2, biochar dosage = 50 mg·L−1, and a reaction time of 24 h. The outcomes of this study contribute valuable insights into garden waste disposal and NO3−–N removal from wastewater, providing a theoretical basis for sustainable environmental management practices.
Funder
the Open Fund of Key Laboratory of Mine Ecological Effects and Systematic Restoration, Ministry of Natural Resources
the Innovation Cultivation Project of Beijing Academy of Science and Technology
the Innovation Engineering Project of Beijing Academy of Science and Technology
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献