Hypergraph and Uncertain Hypergraph Representation Learning Theory and Methods

Author:

Zhang LiyanORCID,Guo Jingfeng,Wang JiazhengORCID,Wang Jing,Li Shanshan,Zhang Chunying

Abstract

With the advent of big data and the information age, the data magnitude of various complex networks is growing rapidly. Many real-life situations cannot be portrayed by ordinary networks, while hypergraphs have the ability to describe and characterize higher order relationships, which have attracted extensive attention from academia and industry in recent years. Firstly, this paper described the development process, the application areas, and the existing review research of hypergraphs; secondly, introduced the theory of hypergraphs briefly; then, compared the learning methods of ordinary graphs and hypergraphs from three aspects: matrix decomposition, random walk, and deep learning; next, introduced the structural optimization of hypergraphs from three perspectives: dynamic hypergraphs, hyperedge weight optimization, and multimodal hypergraph generation; after that, the applicability of three uncertain hypergraph models were analyzed based on three uncertainty theories: probability theory, fuzzy set, and rough set; finally, the future research directions of hypergraphs and uncertain hypergraphs were prospected.

Funder

the National Natural Science Foundation of China

S&T Program of Hebei

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference100 articles.

1. Graphs and Hypergraphs, Dumond, Paris;Berge;Engl. Transl.,1970

2. Normal hypergraphs and the perfect graph conjecture

3. Problems and results on 3-chromatic hypergraphs and some related questions;Erdős,1973

4. Packing problems and hypergraph theory: A survey;Berge,1979

5. Coloring the edges of a hypergraph and linear programming techniques;Berge,1977

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3