Emergent Intelligence in Smart Ecosystems: Conflicts Resolution by Reaching Consensus in Resource Management

Author:

Rzevski GeorgeORCID,Skobelev PetrORCID,Zhilyaev AlexeyORCID

Abstract

A new emergent intelligence approach to the design of smart ecosystems, based on the complexity science principles, is introduced and discussed. The smart ecosystem for resource management is defined as a system of autonomous decision-making multi-agent systems capable to allocate resources, plan orders for resources, and to optimize, coordinate, monitor, and control the execution of plans in real time. The emergent intelligence enables software agents to collectively resolve conflicts arising in resource management decisions by reaching a consensus through a process of detecting conflicts and negotiation for finding trade-offs. The key feature of the proposed approach is the ontological model of the enterprise and the method of collective decision-making by software agents that compete or cooperate with each other on the virtual market of the digital ecosystem. Emergent intelligent systems do not require extensive training using a large quantity of data, like conventional artificial intelligence/machine learning systems. The developed model, method, and tool were applied for managing the resources of a factory workshop, a group of small satellites, and some other applications. A comparison of the developed and traditional tools is given. The new metric for measuring the adaptability of emergent intelligence is introduced. The performance of the new model and method are validated by constructing and evaluating large-scale resource management solutions for commercial clients. As demonstrated, the essential benefit is the high adaptability and efficiency of the resource management systems when operating under complex and dynamic market conditions.

Funder

Ministry of Science and Education of Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. International Council on Systems Engineering (INCOSE) https://www.incose.org/

2. Gartner Top 10 Strategic Technology Trends for 2019 https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/

3. NATO Science & Technology Trends 2020–2040 https://www.nato.int/nato_static_fl2014/assets/pdf/2020/4/pdf/190422-ST_Tech_Trends_Report_2020-2040.pdf

4. European Operational Research Conference http://euro2018valencia.com/

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3