Oxide-Clay Mineral as Photoactive Material for Dye Discoloration

Author:

Miranda Maicon O.,Viana Bartolomeu CruzORCID,Honório Luzia Maria,Trigueiro PollyanaORCID,Fonseca Maria Gardênnia,Franco FranciscoORCID,Osajima Josy A.ORCID,Silva-Filho Edson C.ORCID

Abstract

Titanium and zirconium oxides (TiO2 and ZrO2, respectively) were obtained from alkoxides hydrolyses, and then deposited into palygorskite clay mineral (Pal) to obtain new materials for photocatalytic applications. The obtained materials were characterized by structural, morphological, and textural techniques. X-ray diffraction (XRD) results confirmed the characteristic peaks of oxides and clay transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of the modified palygorskite with both oxides showed that the clay was successfully modified by the proposed method. The increase in the specific surface area of the clay occurred when TiO2 and ZrO2 were deposited on the surface. The photocatalytic activity of these materials was investigated using the Remazol Blue anion dye under UV light. The evaluated systems presented high photocatalytic activity, reaching approximately 98% of dye discoloration under light. Thus, TiO2–Pal and ZrO2–TiO2–Pal are promising clay mineral-based photocatalysts.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3