Investigation of Binary Liquids in Unstable States—An Experimental Approach

Author:

Igolnikov AlexanderORCID,Rutin Sergey,Skripov Pavel

Abstract

In this article, we present a methodology for conducting measurements based on pulse heating of a wire probe in partially soluble binary liquids. These liquids, which can be rapidly transferred to the region of unstable states above the diffusional spinodal, are novel research objects for the thermophysics of extreme states. Using the example of aqueous solutions of polypropylene glycol and glycol monobutyl ether having a lower critical solution temperature, the key hypothesis of the study on the general measurability of the properties of unstable solutions has been confirmed. The characteristic heating times from 1 to 15 milliseconds corresponded to the thickness of the heated layer comprising a few micrometers. The pressure was varied from units of MPa to 100 MPa. The conditions for the transition from measurements on pure components to those on solutions are formulated. The characteristic thermal patterns of the decay of unstable states depending on pressure and heating rate are revealed. The general possibility of using partially soluble binary liquids as a promising coolant in processes involving powerful local heat release is demonstrated.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

1. Stability limits in binary fluids mixtures;Imre;J. Chem. Phys.,2005

2. Crysyal-Liquid-Gas Phase Transitions and Thermodynamic Similarity;Skripov,2006

3. How Fluids Unmix. Discoveries by the School of Van Der Waals and Kamerlingh Onnes;Levelt Sengers,2002

4. Thermophysical properties of Diesel fuel over a wide range of temperatures and pressures;Safarov;Fuel,2018

5. PVT and Thermal-Pressure Coefficient Measurements and Derived Thermodynamic Properties of 2-Propanol in the Critical and Supercritical Regions;Polikhronidi;Int. J. Thermophys.,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3