Abstract
The construction of 1500 m depth shaft in Xincheng Gold Mine, China, faces complex stress conditions such as high geostress (>50 MPa), high ground temperature (>50 °C), high water-pressure (>9 MPa), and highly corrosive. Traditional deep shafts excavated by the sinking and lining method cannot adapt to high geostress problems, such as rock bursts and large deformations, etc., in the deep shaft construction process. To avoid and adjust the high geostress induced the rockburst and large deformations, the mechanism of the advanced sequential geopressure release (ASGR) has been proposed for the ground control in deep shaft construction. In this paper, the safe distance between the concrete lining and the shaft excavation face is determined based on the ASGR mechanism, which can provide the space for geopressure release, and primary support based on rock mass quality and numerical simulation was employed to control the geopressure and deformation. A new support scheme for the deep shaft is proposed, using long bolts to restrain severe deformations, metal mesh, and a double reinforcement bar to improve the induced stress distribution. According to the results, the construction scheme of deep shaft has been improved, and the safe support distance of the proposed scheme is determined to be 12 m, with an interval of three excavation cycles. Compared to the original scheme of shaft lining after excavation, the proposed scheme based on the ASGR mechanism can effectively improve the geopressure release and benefit from controlling the rockburst and large deformation of deep shaft induced by high geostress conditions. The stress distribution in the lining is more uniform, and safety factor of the lining is increased to 2.0, which is benefit the long-term stability of deep shaft.
Funder
National Natural Science Foundation of China
Ministry of Education of the People’s Republic of China
China Scholarship Council
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献