A Primary Support Design for Deep Shaft Construction Based on the Mechanism of Advanced Sequential Geopressure Release

Author:

Zhao Xingdong,Deng LeiORCID,Zhou Xin,Zhao YifanORCID,Guo Zhenpeng

Abstract

The construction of 1500 m depth shaft in Xincheng Gold Mine, China, faces complex stress conditions such as high geostress (>50 MPa), high ground temperature (>50 °C), high water-pressure (>9 MPa), and highly corrosive. Traditional deep shafts excavated by the sinking and lining method cannot adapt to high geostress problems, such as rock bursts and large deformations, etc., in the deep shaft construction process. To avoid and adjust the high geostress induced the rockburst and large deformations, the mechanism of the advanced sequential geopressure release (ASGR) has been proposed for the ground control in deep shaft construction. In this paper, the safe distance between the concrete lining and the shaft excavation face is determined based on the ASGR mechanism, which can provide the space for geopressure release, and primary support based on rock mass quality and numerical simulation was employed to control the geopressure and deformation. A new support scheme for the deep shaft is proposed, using long bolts to restrain severe deformations, metal mesh, and a double reinforcement bar to improve the induced stress distribution. According to the results, the construction scheme of deep shaft has been improved, and the safe support distance of the proposed scheme is determined to be 12 m, with an interval of three excavation cycles. Compared to the original scheme of shaft lining after excavation, the proposed scheme based on the ASGR mechanism can effectively improve the geopressure release and benefit from controlling the rockburst and large deformation of deep shaft induced by high geostress conditions. The stress distribution in the lining is more uniform, and safety factor of the lining is increased to 2.0, which is benefit the long-term stability of deep shaft.

Funder

National Natural Science Foundation of China

Ministry of Education of the People’s Republic of China

China Scholarship Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3