Exploring Industry-Level Fairness of Auto Insurance Premiums by Statistical Modeling of Automobile Rate and Classification Data

Author:

Xie ShengkunORCID,Luo Rebecca,Li YuanshunORCID

Abstract

The study of actuarial fairness in auto insurance has been an important issue in the decision making of rate regulation. Risk classification and estimating risk relativities through statistical modeling become essential to help achieve fairness in premium rates. However, because of minor adjustments to risk relativities allowed by regulation rules, the rates charged eventually may not align with the empirical risk relativities calculated from insurance loss data. Therefore, investigating the relationship between the premium rates and loss costs at different risk factor levels becomes important for studying insurance fairness, particularly from rate regulation perspectives. This work applies statistical models to rate and classification data from the automobile statistical plan to investigate the disparities between insurance premiums and loss costs. The focus is on major risk factors used in the rate regulation, as our goal is to address fairness at the industry level. Various statistical models have been constructed to validate the suitableness of the proposed methods that determine a fixed effect. The fixed effect caused by the disparity of loss cost and premium rates is estimated by those statistical models. Using Canadian data, we found that there are no significant excessive premiums charged at the industry level, but the disparity between loss cost and premiums is high for urban drivers at the industry level. This study will help better understand the extent of auto insurance fairness at the industry level across different insured groups characterized by risk factor levels. The proposed fixed-effect models can also reveal the overall average loss ratio, which can tell us the fairness at the industry level when compared to loss ratios by the regulation rules.

Publisher

MDPI AG

Subject

Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting

Reference30 articles.

1. Efficiency and Fairness in Insurance Risk Classification

2. Insurance Premium Optimization: Perspective of Insurance Seeker and Insurance Provider

3. Discrimination and Insurance. The Routledge Handbook to Discrimination Lippert-Rasmussen Ed, University of Texas Law, Law and Econ Research Paper No. E574 https://ssrn.com/abstract=3089946

4. Insurance, Big Data and Changing Conceptions of Fairness

5. The Effect of Regulation on Insurance Pricing: The Case of Germany

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3