Abstract
Automatic crack identification for pipeline analysis utilizes three-dimensional (3D) image technology to improve the accuracy and reliability of crack identification. A new technique that integrates a deep learning algorithm and 3D shadow modeling (3D-SM) is proposed for the automatic identification of corrosion cracks in pipelines. Since the depth of a corrosion crack is below the surrounding area of the crack, a shadow of the crack is projected when the crack is exposed under light sources. In this study, we analyze the shadow areas of cracks through 3D shadow modeling (3D-SM) and identify the evolving cracks through the shape analysis of the shadows. To denoise the 3D images, the connected domain analysis is implemented so that the shadow groups of the evolving cracks can be retained and the scattered shadow groups that occur due to insignificant defects can be eliminated. Moreover, a novel deep neural network is developed to process the 3D images. The proposed automatic crack identification method successfully processes the 3D images efficiently and accurately diagnoses the corrosion cracks. Experimental results show that the proposed method achieves satisfactory performance with 93.53% accuracy and a 92.04% regression rate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献