“Surveyability” in Hilbert, Wittgenstein and Turing

Author:

Floyd Juliet

Abstract

An investigation of the concept of “surveyability” as traced through the thought of Hilbert, Wittgenstein, and Turing. The communicability and reproducibility of proof, with certainty, are seen as earmarked by the “surveyability” of symbols, sequences, and structures of proof in all these thinkers. Hilbert initiated the idea within his metamathematics, Wittgenstein took up a kind of game formalism in the 1920s and early 1930s in response. Turing carried Hilbert’s conception of the “surveyability” of proof in metamathematics through into his analysis of what a formal system (what a step in a computation) is in “On computable numbers, with an application to the Entscheidungsproblem” (1936). Wittgenstein’s 1939 investigations of the significance of surveyability to the concept of “proof “in Principia Mathematica were influenced, both by Turing’s remarkable everyday analysis of the Hilbertian idea, and by conversations with Turing. Although Turing does not use the word “surveyability” explicitly, it is clear that the Hilbertian idea plays a recurrent role in his work, refracted through his engagement with Wittgenstein’s idea of a “language-game”. This is evinced in some of his later writings, where the “reform” of mathematical notation for the sake of human surveyability (1944/45) may be seen to draw out the Hilbertian idea. For Turing, as for Wittgenstein, the need for “surveyability” earmarks the evolving culture of humans located in an evolving social and scientific world, just as it had for Hilbert.

Publisher

MDPI AG

Subject

History and Philosophy of Science,Philosophy

Reference107 articles.

1. Sieg, W., and Hallett, M. (2013). The series David Hilbert’s Lectures on the Foundations of Mathematics and Physics 1891–1933, Springer.

2. Russell, B. (1919). Introduction to Mathematical Philosophy, Allen & Unwin. [1st ed.].

3. Hodges, A. (2012). Alan Turing: The Enigma—The Cenetnary Edition, Princeton University Press.

4. Floyd, J., and Bokulich, A. (2017). Philosophical Explorations of the Legacy of Alan Turing, Springer.

5. Hilbert, D., and Bernays, P. (1934). Grundlagen der Mathematik. I, die Grundlehren der Mathematischen Wissenschften, Springer. [2nd ed.].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3