Implementation of EDGE Computing Platform in Feeder Terminal Unit for Smart Applications in Distribution Networks with Distributed Renewable Energies

Author:

Chih Hsin-Ching,Lin Wei-Chen,Huang Wei-TzerORCID,Yao Kai-ChaoORCID

Abstract

Under the plan of net-zero carbon emissions in 2050, the high penetration of distributed renewable energies in distribution networks will cause the operation of more complicated distribution networks. The development of edge computing platforms will help the operator to monitor and compute the system status timely and locally, and it can ensure the security operation of the system. In this paper, a novel EDGE computing platform that is implemented by a graphics processing unit in the existing feeder terminal unit (FTU) is proposed for smart applications in distribution networks with distributed renewable energies and loads. This platform makes timely forecasts of the feeder status for the next seven days in accordance with historical weather, sun, and loading data. The forecast solver uses the machine learning long short-term memory (LSTM) method. Thereafter, the power calculation analyzers transform feeder topology into the circuit model for transient-state, steady-state, and symmetrical component analyses. An important-factor explainer parses the LSTM model into the concise value of each historical datum. All information transports to remote devices via the internet for the real-time monitor feature. The software stack of the EDGE platform consists of the database archive file system, time-series forecast solver, power flow analyzers, important-factor explainer, and message queuing telemetry transport (MQTT) protocol communication. All open-source software packages, such as SQLite, LSTM, ngspyce, Shapley Additive Explanations, and Paho-MQTT, form the aforementioned function. The developed EDGE forecast and power flow computing platform are helpful for achieving FTU becoming an Internet of Things component for smart operation in active distribution networks.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference38 articles.

1. IEC 61850-Based Feeder Terminal Unit Modeling and Mapping to IEC 60870-5-104

2. Enabling a Decentralized Smart Grid Using Autonomous Edge Control Devices

3. Grid Edge Control: A new approach for volt-var optimization;Moghe;Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D),2016

4. Distribution grid edge control: Field demonstrations;Moghe;Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM),2016

5. An Automation Scheme for Emergency Operation of a Multi-Microgrid Industrial Park

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3