Abstract
Deep ripping, in conjunction with gypsum and/or organic amendment, is known to be useful for removing physical constraints and improving crop yields in dispersive subsoils. However, the benefits are short-lived due to lateral movement of Na into soil between the rip lines, and slumping following the wetting of loosened soil, leaving low pore volume for air and water movement. This study evaluated the effect of high concentration polyacrylamide (PAM) solutions on stabilising soil structure, with a focus on PAM application on dispersive aggregates theoretically dislodged by ripping, as part of the subsoil decompaction. Three distinct soils (Vertosol, Kandosol, and Dermosol) from southern Queensland were treated to be sodic. These aggregates were further applied with PAM solutions under three scenarios, including: immersion, coating, and no application. In general, PAM stabilised soil aggregates with a concentration above 1.5 g L–1 when immersed into PAM solution or coated with PAM product, as compared to non-PAM-treated samples. The efficacy depended on PAM concentration, viscosity, soil type, and mechanical force. The concept of spraying PAM for stabilising the subsoil during tillage was proposed, as there is feasible potential for PAM to prolong the benefits of subsoil decompaction long enough through stabilising aggregate structure.
Funder
Cotton Research and Development Corporation
Grains Research and Development Corporation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献