Study on Elastoplastic Damage Coupling of Reservoir Mudstone Considering Permeability Change

Author:

Jing Wenjun,Mei Songhua,Zhao Yanan,Zhang Yu

Abstract

Mudstone, a common complex medium in oil and gas reservoirs and with widely distributed micro-pore and micro-fissures, is liable to produce significant damage evolution and plastic deformation under high buried depth stress environments. Based on the analysis of the physical characteristics, the elastoplastic damage coupling mechanical characteristics of mudstone in a high buried depth reservoir for oil and gas engineering are discussed. Firstly, conventional triaxial compression tests under different confining pressures were performed to calculate the damage variable and obtain the damage evolution. The damage evolution included the elastic damage stage, the plastic-dominated elastoplastic damage coupling stage and the damage-dominated elastoplastic damage coupling stage. Secondly, a coupled elastoplastic damage mechanical model for mudstone was proposed, which was based on the degradation of the damage stiffness and plastic flow caused by the plastic and damage internal variables and considered the elastic damage coupling and elastoplastic damage coupling during the loading process. Thirdly, the elastoplastic damage coupling mechanical characteristics of mudstone were simulated. The simulation results are in good agreement with the experimental results, which reflects well the mechanical characteristics of mudstone, including the transition from volume compression to expansion, plastic hardening, damage softening and residual strength, etc. Finally, based on the relevant research results, a permeability evolution model of mudstone based on the damage was proposed, and the secondary development was carried out based on ABAQUS. UMAT and USFLD subroutines were compiled, and seepage–stress coupling simulation verification was carried out. The relevant results provide a reliable basis for engineering theory research and stability analysis of deep mudstone reservoirs.

Funder

China Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3