Estimation of the Dynamic Parameters of the Bearings in a Flexible Rotor System Utilizing Electromagnetic Excitation by a Built-In Motor

Author:

Chen Yinsi,Yang Ren,Sugita Naohiro,Zhong Jianpeng,Mao Junhong,Shinshi Tadahiko

Abstract

Estimation of the dynamic parameters of bearings is essential in order to be able to interpret the performance of rotating machinery. In this paper, we propose a method to estimate the dynamic parameters of the bearings in a flexible rotor system. By utilizing the electromagnetic excitation generated by a built-in PM motor and finite element (FE) modeling of the rotor, safe, low-cost, and real-time monitoring of the bearing dynamics can be achieved. The radial excitation force is generated by injecting an alternating d-axis current into the motor windings. The FE model of the rotor and the measured frequency responses at the motor and bearing locations are used to estimate the dynamic parameters of the bearings. To evaluate the feasibility of the proposed method, numerical simulation and experiments were carried out on a flexible rotor system combined with a bearingless motor (BELM) having both motor windings and suspension windings. The numerical simulation results show that the proposed algorithm can accurately estimate the dynamic parameters of the bearings. In the experiment, the estimates made when utilizing the excitation force generated by the motor windings are compared with the estimates made when utilizing the excitation force generated by the suspension windings. The results show that most of the stiffness and damping coefficients for the two experiments are in good agreement, within a maximum error of 8.92%. The errors for some coefficients are large because the base values of these coefficients are small in our test rig, so these coefficients are sensitive to deviations. The natural frequencies calculated from the dynamic parameters estimated from the two experiments are also in good agreement, within a maximum relative error of 3.04%. The proposed method is effective and feasible for turbomachines directly connected to motors, which is highly significant for field tests.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3