An Overall Linearized Modeling Method and Associated Delay Time Model for the PV System

Author:

Zhu Xianping1ORCID,Li Shaowu1,Fan Jingxun1ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi 445000, China

Abstract

There are some significant nonlinearity and delay issues in photovoltaic (PV) system circuits. Therefore, it is very difficult for the existing classic linear control theories to be used in PV systems; this hinders the design of the optimal energy dispatch by considering real-time generation power forecasting methods. To solve this problem, an overall linearized model with variable weather parameters (OLM-VWP) of the PV system is proposed on the basis of small-signal modeling. Meanwhile, a corresponding simplified overall linearized model with variable weather parameters (SOLM-VWP) is presented. The SOLM-VWP avoids analyzing delay characteristics of the complex high-order PV system. Moreover, it can reduce hardware cost and computation time, which makes analysis of the transient performance index of the PV system more convenient. In addition, on the basis of the OLM-VWP and SOLM-VWP, a delay-time model with variable weather parameters (DTM-VWP) of the PV system is also proposed. The delay time of the system can be accurately calculated using the DTM-VWP, and it provides a preliminary theoretical basis for carrying out real-time energy scheduling of the PV system. Finally, simulations are implemented using the MATLAB tool, and experiments are conducted. The results verify that the proposed linearization model of the PV system is accurate and reasonable under varying irradiance and temperature conditions. Meanwhile, the results also verify that the proposed SOLM-VWP and DTM-VWP of the PV system are feasible. Additionally, the results show that some transient performance indexes (delay time, rise time, settling time, and peak time) can be solved by means of equations when the circuit parameters and real-time weather parameters are given.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3