Manufacturing of High-Performance Bi-Metal Bevel Gears by Combined Deposition Welding and Forging

Author:

Chugreeva Anna,Mildebrath Maximilian,Diefenbach Julian,Barroi AlexanderORCID,Lammers Marius,Hermsdorf Jörg,Hassel Thomas,Overmeyer Ludger,Behrens Bernd-Arno

Abstract

The present paper describes a new method concerning the production of hybrid bevel gears using the Tailored Forming technology. The main idea of the Tailored Forming involves the creation of bi-metal workpieces using a joining process prior to the forming step and targeted treatment of the resulting joint by thermo-mechanical processing during the subsequent forming at elevated temperatures. This improves the mechanical and geometrical properties of the joining zone. The aim is to produce components with a hybrid material system, where the high-quality and expensive material is located in highly stressed areas only. When used appropriately, it is possible to reduce costs by using fewer high-performance materials than in a component made of a single material. There is also the opportunity to significantly increase performance by combining special load-tailored high-performance materials. The core of the technology consists in the material-locking coating of semi-finished parts by means of plasma-transferred-arc welding (PTA) and subsequent forming. In the presented investigations, steel cylinders made of C22.8 are first coated with the higher-quality heat-treatable steel 41Cr4 using PTA-welding and then hot-formed in a forging process. It could be shown that the applied coating can be formed successfully by hot forging processes without suffering any damage or defects and that the previous weld structure is completely transformed into a homogeneous forming-typical structure. Thus, negative thermal influences of the welding process on the microstructure are completely neutralized.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3