Resource Prediction-Based Edge Collaboration Scheme for Improving QoE

Author:

Park JinhoORCID,Chung Kwangsue

Abstract

Recent years have witnessed a growth in the Internet of Things (IoT) applications and devices; however, these devices are unable to meet the increased computational resource needs of the applications they host. Edge servers can provide sufficient computing resources. However, when the number of connected devices is large, the task processing efficiency decreases due to limited computing resources. Therefore, an edge collaboration scheme that utilizes other computing nodes to increase the efficiency of task processing and improve the quality of experience (QoE) was proposed. However, existing edge server collaboration schemes have low QoE because they do not consider other edge servers’ computing resources or communication time. In this paper, we propose a resource prediction-based edge collaboration scheme for improving QoE. We estimate computing resource usage based on the tasks received from the devices. According to the predicted computing resources, the edge server probabilistically collaborates with other edge servers. The proposed scheme is based on the delay model, and uses the greedy algorithm. It allocates computing resources to the task considering the computation and buffering time. Experimental results show that the proposed scheme achieves a high QoE compared with existing schemes because of the high success rate and low completion time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Building the Hyperconnected Societyhttp://www.internet-of-things-research.eu/pdf/Building_the_Hyperconnected_Society_IERC_2015_Cluster_eBook_978-87-93237-98-8_P_Web.pdf

2. Artificial Intelligence Enabled Internet of Things: Network Architecture and Spectrum Access

3. Edge-centric Computing

4. Mobile-Edge Computing-Introductory Technical. White Paper,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3