A Numerical Simulation of Machining 6061 Syntactic Foams Reinforced with Hollow Al2O3 Shells

Author:

Thomas Kevin,Kannan Sathish,Nazzal Mohammad,Pervaiz SalmanORCID,Karthikeyan RamanujamORCID

Abstract

Aluminum closed cell syntactic foams possess reduced density, higher peak compression strength, and lower coefficient of thermal expansion and thermal conductivity compared to metal alloys. However, the industrial mass production of these complex material systems presents a significant problem in the form of poor machinability. In order to address this concern and to increase the use of this potential cost- and energy-saving system, a two-dimensional numerical model using the AdvantEdgeTM machining software was developed. For the verification of the numerical model, machining trials in dry conditions were conducted on different samples using a SandvikTM carbide-coated insert having a 6° rake angle and a 7° clearance angle. The hollow alumina shell diameter and volume fraction were found to profoundly affect the magnitude of the generated machining forces. This study showed an increase in machining force by almost 25% for syntactic foams reinforced with hollow alumina shells of higher volume fraction and coarser diameters. The cutting conditions to obtain a favorable stress diastribution in the syntactic foam’s machined sub-surface were identified.

Funder

American University of Sharjah

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3