Fracture Analysis of Ultrahigh-Strength Steel Based on Split Hopkinson Pressure Bar Test

Author:

Xiao Shihong,Luan Xiaosheng,Liang ZhiqiangORCID,Wang Xibin,Zhou Tianfeng,Ding Yue

Abstract

Impact loading is an important cause of fracture failure of ultrahigh-strength steel parts during service. Revealing the fracture mechanism of ultrahigh-strength steel under impact loading has important reference significance for the material preparation, part design, and manufacturing of such steel. Based on the split Hopkinson pressure bar (SHPB) test, the mechanical response characteristics of 45CrNiMoVA steel under impact loading were analyzed, and the true stress–true strain curves under a high strain rate (103 s−1) were obtained. It was found that under the simultaneous action of forward and tangential loading forces, a severe plastic deformation layer with a thickness of 20–30 μm was generated in the near impact-loading end face, which is the main cause for crack initiation and propagation. Under the condition of a high strain rate, the plastic flow stress of 45CrNiMoVA steel was characterized by the equilibrium of strain hardening and strain softening, and its impact fracture toughness decreased by 43.6%, resulting in increased quasi-cleavage fracture. Hence, severe surface plastic deformation during 45CrNiMoVA steel machining should be avoided, as it may lead to early failure.

Funder

National Key R&D Program of China

Industrial Technology Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3